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Part 1

* Current models of quasars

* Why lensing?

Part 2

* BALs: unique probes

* The accretion disk profile

 Can we determine angle-of-viewing?
* Summary
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A Structure for Quasars
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Some observations to get started

* There have been over 20k papers published
with quasar in the title and a further 30k
referring to quasars in the abstract, but...

* we still have a poor understanding of what we
are observing ie model for the inner region,

e due to the small scales, ~ micro-arcseconds



Why lensing?

i

position. For the same quasar, Corrigan et al.(1991) found weak evidence for colour
changes in one image as a function of amplification. Such observations might provide
information about the spectral profile of the continuum source. For the BAL quasar,
14134117, Angonin et al.(1990) found evidence for differences in structure of the
absorption troughs in different images. These might be due to either variability in
the source or tg differential amplification of different parts of the source.

Gravitational microlensing can resolve structure in extragalactic sources on much
smaller scales than any other know technique, :. e.microarcsecond scales. However

this 1s a telescope over which we have no control — we are not able to chose our
sources, nor our microlenses. In particular, we cannot chose the mass distribution
in the lens, and must work not only with the imperfect focus that a compact
object provides, but usually with the complex network of caustics realised from
an ensemble of compact objects. Deconvolution techniques for the light curves are
still in their infancy. Nevertheless, signficant progress has been made, and we might
expect that consistent monitoring of selected objects both by direct imaging and
spectroscopy, might provide a wealth of information, particularly on the structure

of quasars. Webster 1994 /




The microlensing approach

Optical depth to microlensing ~1 = caustic
network

Potential approaches (incomplete!):

— Single epoch + macro-imaged spectral

— Lightcurves, multi-band

— Target-of-opportunity: caustic-crossings

— Statistical populations: uniform angle-of-viewing
Disk-wind model + opaque torus

Opaque accretion disk = only view the forward
side of the wind/disk

KISS



The microlensing approach

Optical depth to microlensing ~1 = caustic
network

Potential approaches:

— Single epoch + macro-imaged spectral

— Lightcurves, multi-band

— Target-of-opportunity: caustic-crossings

— Statistical populations: uniform angle-of-viewing
Disk-wind model + opaque torus

Opaque accretion disk = only view the forward
side of the wind/disk

KISS (Keep it simple stupid)



Peeling the onion

* Special classes of
guasars provide

\ insights:

e BALs, Anomalous....

Axi-symmetric =2
direction matters

e Need all elements to
resolve the structure
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Gerlumph: microlensing simulations
Fluke&Vernardos

Lightcurves show variation on
observable timescales

a
Ematan raen
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Different image scales
show different magnification
lightcurves
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Gerlumph: microlensing simulations
Fluke&Vernardos

+ quasar models

Lightcurves show variation on
observable timescales

10pc

Different image scales
show different magnification
lightcurves
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BALs: unique probes

Two experiments:

e H1413+117 using high resolution IFU spectra
(O'Dowd+:2015)

 Statistical study using SDSS sample
(Yong+: 2017)
* (Extended statistical follow-up)
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Transmission Transmission
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BALs: what did we learn?

* The offset for CIV and NV is ~1500km/sec: this
shows where the line-of-sight to the UV
continuum intersects with the outflowing
wind

* The strong absorption suggests a high
covering factor at high velocities, ie large radii
and wide spatial region

 The BAL absorption is clumpy



Modelling

o
* Yong MSc, 2015
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Figure 5.1: Cylindrical disk wind model.
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A dynamical model with Mg, rotational and poloidal wind components,
but no photoionisation. Emission ~ gas density.
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BALs: what did we learn? - 2

e Strong evidence for the disk-wind model

 We do not observe BALs along (very) different lines-of-
sight ie they can be observed along any line-of-sight

* But not all lines-of-sight give a BAL

* |Indeed different lines-of-sight give different sorts of
BALs

* Velocity offsets measure the projected poloidal
velocity ie outflow for a particular line

* A ‘narrow’ wind would give constrained FWHM,
velocity offsets etc

- the wind has a large opening angle, and variable
optical depth



Accretion disk profile

Do we see an Shakua-Sunyaev disk profile?
Size affects magnification (Bate+: 2007)

Can we use single epoch
Images to obtain profiles?
Single epoch results all
over the place

New HST images 2
galaxy rings + new data
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* New HST imaging — ~7 bandpasses
* 4 sources test ‘single epoch imaging’

* (others show Einstein rings ) (1 \P
* p=4/3 = SS disk F="Ts E)
* Single epoch observations only valid if
Am is large e
.............. .
- | % N A Suite 3 MiE(S ‘l[




Disk profiles: what we learned

Ensembles with low Am don’t return valid
measurements

But high Am’s are valid

One strong measurement, p>4/3 - shallower
temperature profile,

and a larger accretion disk

—> we do not see an SS accretion disk with the
continuum emission



Finally, angle-of viewing

Simple modeling suggests that
angle-of-viewing affects

- Velocity offsets, +
- FWHM



Can we use these correlations to measure
angle-of-viewing?

BLR velocities scale with Mg, angle-of-
viewing, geometry

Simple model: predicts obscuration by torus
of ~40°

Difficult to test

But sensible and consistent



Summary

Data: high image, spectral and angular resolution
(high cadence temporal datasets coming)

Modeling sophistication — dynamics& kinematics
+ photoionisation

Breaking degeneracies with lensing: microlensing
networks now ‘available’

Much, much more to be done



